# ENARTIS NEWS STABILIZING PROTEINS FROM THE BEGINNING Protein stability has always been a challenge in winemaking. In the last three decades, we have witnessed a general increase in protein instability levels in white wines all over the world. This translates to more and more bentonite being required to fully stabilize wines. This may be due changing climate or to modifications to vineyard management and harvest, which has trended towards higher quality rather than quantity. The amount of bentonite needed to achieve protein stability can vary from 0.1 g/hL up to 1-3g/L for aromatic varieties like Sauvignon Blanc. Some wines, especially those with high pH levels or those from grapes grown in warm climates, may need even higher dosages. Though effective, bentonite fining generates different problems. First, this treatment is not selective to just proteins and can affect wine quality by stripping aromas and flavors. Secondly, bentonite fining causes wine volume losses, estimated between 3% and 5%, that represent the main cost of the treatment. Finally, the disposal of spent bentonite constitutes a non-negligible source of waste. For these reasons, Enartis has outlined proactive practices winemakers can take for protein stabilization that will help maintain quality, reduce costs and increase sustainability. ## TOOLS FOR ACHIEVING PROTEIN STABILITY #### **Bentonite** Despite the problem related to its application, bentonite fining remains the most common and effective practice for protein stabilization in the wine industry. For this reason, it is worth to have a better knowledge about it. There are many kinds of bentonite in the market and they are not all effective for protein stability in the same way. Their enological properties and application mainly depend on the nature of the main exchangeable cation (table 1). Also, the presence of impurities (quartz and minerals other than montmorillonite) or big particles that can damage winery equipment (filters, membranes, pumps, centrifuges etc.) make it more or less suitable for the enological application. Table 1: kinds of bentonite and their main enological properties (4 more efficient; 1 less efficient) | | | Main exchangeable cation | Swelling capability | Protein removal | Clarification activity | Lees compaction | |-----------------------|--------------------------------------------------|--------------------------|---------------------|-----------------|------------------------|-----------------| | Natural bentonites | Sodium bentonite | Sodium | ••• | ••• | •• | • | | Natural pentonites | Calcium bentonite | Calcium | • | • | ••• | ••• | | Activated bentonites* | Calcium bentonites activated by sodium carbonate | Sodium | <b>**/**</b> | *** | ** | <b>6/66</b> | <sup>\*</sup> Activated bentonites' properties depend on the level of activation. They can have an intermediate behavior between calcium and sodium bentonite or equal or even superior to this last one. Another criterion that should guide the choice of bentonite is tasting. For the most, winemakers tend to consider bentonite just like a tool for removing proteins, without any organoleptic effect. The reality is that bentonite is the enological adjuvant with the highest average dose/liter (0.5 – 1 g/L) after oak alternatives. Bentonite does have a clear sensory impact and using one product or another can make a huge difference. #### When to use bentonite? Especially with wines requiring the highest dosages of bentonite, the usual question is if it is better to treat the juice or the wine. Must is richer in protein than wine, this of course reduces bentonite effect. Considering that one on the main cost related to the use of bentonite is wine aromatic quality downgrades, it is always suggestable to treat the juice instead of the wine. In the juice, the most of aromatics compounds are present in bound form, less absorbable by bentonite. Moreover, by treating the juice, the aromatics produced during the fermentation are not removed. # Enartis bentonite guiding table ( \*\*\*\* more efficient; \* less efficient) | | | Kind of bentonite | Physical form | Swelling capability | Protein removal | Clarification activity | Lees compaction | |-----|------------|------------------------------------|---------------|---------------------|-----------------|------------------------|-----------------| | PLU | JXBENTON N | Natural sodium bentonite | Granulated | *** | *** | •• | •• | | PLU | JXCOMPACT | Calcium bentonite sodium activated | Granulated | • | • | *** | *** | ## **HOW TO REDUCE BENTONITE FINING?** Even though there is no current economic and effective alternative to bentonite, the use of tannins, mannoproteins and enzymes can help to reduce its dosage and minimize all the negative effects related to its application. #### **Tannins** Tannins have the ability to react with proteins and make them precipitate. Among the different classes of enological tannins, the condensed ones (extracted from grape, quebracho and other exotic wood) are the most reactive (table 2). Also, gallic and ellagic tannins can be effective for this application Table 2: classes of tannin and their enological effect | | Antioxidant effect | Colour stability | Aroma cleanliness | Protein removal | Metal chelation | |------------------|--------------------|------------------|-------------------|-----------------|-----------------| | Gallic Tannin | *** | • | • | • | •• | | Ellagic Tannin | *** | •• | ••• | •• | *** | | Condensed Tannin | • | *** | • | *** | • | Tannin effectiveness in improving wine protein stability is far lower than bentonite. Nevertheless, small additions of tannin starting from the juice stage and continuing all long the maturation period, can help to reduce wine protein content whilst contributing antioxidant protection of color and aroma. For improving protein stability, tannin addition at the juice stage or in fermentation is the best practice. In the early phase of vinification in fact, addition rate can be high (up to 10-15 g/hL) without any risk of altering the sensory profile of the wine. Close to bottling, only small additions, and by consequence very little effective, are possible. #### **Enartis tannins that can improve protein stability during the fermentation stage** | | Commonition | Protein removal | Antioxidant | Sensory effect | | | | |--------------|-------------------------------------------------------------------------|-----------------|-------------|----------------|-------------|----------|-------------------------------------------| | | Composition | Protein removai | effect | Structure | Astringency | Softness | Aroma | | Tan Arom | Gallic and digallic tannins + inactivated yeast rich of sulfur peptides | ** | **** | •• | •• | •• | Pineapple, passion fruit, grapefruit | | Tan Blanc | Gallic tannin | • | **** | •• | •• | • | Neutral | | Tan Citrus | Gallic and condensed tannins | *** | **** | •• | •• | •• | Citrus, white flower | | Tan Elegance | Condensed tannin from exotic wood and white grape skin | *** | *** | •• | • | *** | Stonefruit, white flower | | Tan Skin | Condensed tannin from white grape skin | *** | *** | •• | •• | •• | Stonefruit, pineap-<br>ple, passion fruit | #### Yeast mannoproteins It is well-known that keeping dry wines in contact with their lees allows to reduce the dose of bentonite needed before bottling. The effect of keeping the wine on lees on protein stability seems to be due to the presence of yeast mannoproteins, which can be released naturally during fermentation or by autolysis during wine ageing. As a matter of fact, mannoproteins have been shown to protect wines from protein precipitation. The mechanism of haze protection remains unclear: they may protect protein against heat denaturation or, once proteins are denatured, protect against formation of large insoluble aggregates. In order to increase wine mannoprotein content and its beneficial effect on protein stability, yeast derivatives can be added during the fermentation stage or during wine ageing. # Enartis yeast derivative products that can improve wine protein stability | | | Composition | Antioxidant<br>effect | Aroma<br>enhancement | Mouthfeel improvement | Anti-ageing effect | |--------------|---------------|-----------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------| | Fermentation | PRO AROM | Inactivated yeast rich in sulfur peptides | •• | (more thiols) | • | •• | | | PRO BLANCO | Inactivated yeast rich in mannoproteins and sulfur peptides | ** | (more thiols) | •• | •• | | | PRO FT | Inactivated yeast rich in mannoproteins and sulfur peptides + PVI-PVP | *** | (more thiols) | •• | *** | | | PRO R | Inactivated yeast | • | • | • | • | | | PRO UNO | Yeast hulls rich in mannoproteins | • | • | •• | • | | Maturation | SURLÌ ELEVAGE | Yeast cell walls | ** | • | *** | • | | Matu | SURLÌ ONE | Inactivated yeast enzymatically treated | •• | • | *** | •• | #### **Enzymes** Achieving protein stability with enzymes is a particularly appealing alternative to bentonite because it minimizes wine volume and quality loss. Since 1950s, the research has focused on finding proteases that can destroy haze-forming wine proteins under winemaking conditions. The difficulty in adopting this solution is associated with the fact that the proteins most associated with wine instability, both chitinase and thaumatin-like proteins, are very resistant to proteases in their native form. In fact, after a flash-pasteurization, haze-forming proteins unfold and become more susceptible to protease activity. Nevertheless, the application of proteases active in wine conditions can lead to a 20-25% reduction of bentonite required for stabilization. ## **ENARTIS ZYM AROM MP** Micro-granulated enzymatic preparation for maceration of white grapes and rosé wine vinification. Its secondary activities, hemicellulases and proteases, break cell walls and membranes localized in the skin. This not only causes the solubilization of aromatic precursors contained in the vacuole, but also those bound to solid cell structures. Wines treated with Zym Arom MP have an aromatic profile characterized by intense fruit aromas with complexity and persistence. Moreover, the protease activity contributes to protein stabilization thus reducing bentonite additions by 20-25% (graphic 1). Application: maceration of white and red grapes; production of fruity white, red and rosé wines; improved protein stability. Dosage: 20-40 g/ton Packaging: 250 g - 1 kg **Graph 1: the effect of Enartis Zym Arom MP on wine protein stability.** Below are results of treated wines, following a heat stability test (2 hours at 80°C). Wine is protein stable when the change in optical density at 540 nm, is below 0.02. The treatments are as follows: BLUE: Wine from grapes treated with Enartis Zym Arom MP during maceration. GREEN: Wine from grapes treated with Zym Arom MP during maceration and Enartis Pro FT at yeast inoculation time. ORANGE: Control - Wine from grapes treated with pectolytic enzyme. Average results are shown from treatments in triplicate. Treatment with Enartis Zym Arom MP increased the wine protein stability level. # **Enartis Zym Arom MP** improves wine protein stabiliity